
Stack and Queue: Fundamental
Data Structures
Welcome to the lecture on two crucial linear data structures in programming. Today,
we will explore the working principles of stacks and queues, examine their practical
applications, and learn how to implement them using various methods.

What is a Stack?

LIFO Principle

Last In, First Out 4 the last one in, is the first one out. This is the main
principle of a stack's operation, where access is only possible to the top
element.

Real-world analogies:

A stack of books on a table

A stack of plates in a buffet

The "Undo" button in a text editor

Browser history (the "Back" button)

Key operations:

push(x) 4 add an element to the top

pop() 4 remove the top element

top()/peek() 4 view the top element

empty() 4 check if the stack is empty

What is a Queue?

FIFO Principle

First In, First Out 4 the first one to arrive is the first one to leave. In a
queue, elements are added to the end and removed from the beginning.

Real-world analogies:

Queue in a store or bank

Print queue on a printer

Processing requests in order of arrival

Data buffering in network protocols

Key operations:

enqueue(x) 4 add element to the end

dequeue() 4 remove element from the beginning

front() 4 view the first element

empty() 4 check if the queue is empty

Applications of Stack in
Programming

Bracket Checking

The stack is ideal for checking the
correctness of bracket placement in
mathematical expressions and
program code.

Opening bracket ³ push

Closing bracket ³ pop and
compare

Function Call Stack

Each function call is placed onto the
stack. When a function finishes, its
data is removed from the stack,
returning control to the previous
function.

Reverse Polish Notation

Evaluating expressions in postfix notation: operands are pushed onto the stack,
operators pop them for calculations.

Applications of Queues in
Programming

Breadth-First Search (BFS)

The BFS algorithm uses a queue to
visit nodes level by level, ensuring
the shortest path in an unweighted
graph.

Task Scheduler

Operating systems use queues to
manage processes and threads,
ensuring fair resource allocation.

Data Buffering

Queues are used for temporary
storage of data between processes
with different processing speeds.

Array-based Stack Implementation
Data Structure

An array-based stack uses a static array of fixed size and a top variable that points to the index of the top element.

#include
using namespace std;

struct Stack {
 int arr[100];
 int top = -1;

 void push(int x) {
 if (top == 99) {
 cout << "Stack overflow!" << endl;
 return;
 }
 arr[++top] = x;
 }

 void pop() {
 if (top == -1) {
 cout << "Stack underflow!" << endl;
 return;
 }
 top--;
 }

 int peek() {
 if (top == -1) return -1;
 return arr[top];
 }

 bool empty() {
 return top == -1;
 }
};

Advantages

Simple implementation, fast O(1) access, minimal memory
overhead

Disadvantages

Fixed size, potential for overflow, inefficient memory usage

Linked List Stack Implementation
Dynamic Structure

A stack based on a linked list uses nodes connected by pointers. The head variable points to the top of the stack.

struct Node {
 int data;
 Node* next;
};

struct Stack {
 Node* head = nullptr;

 void push(int x) {
 Node* newNode = new Node{x, head};
 head = newNode;
 }

 void pop() {
 if (!head) {
 cout << "Stack is empty!" << endl;
 return;
 }
 Node* temp = head;
 head = head->next;
 delete temp;
 }

 int peek() {
 if (!head) return -1;
 return head->data;
 }

 bool empty() {
 return head == nullptr;
 }
};

Advantages:

Dynamic size

Efficient memory usage

No limitations on the number of elements

Disadvantages:

Additional memory for pointers

Slower due to pointer operations

Potential for memory leaks

Queue Implementation using an Array
Circular Buffer

An efficient array-based queue implementation uses a circular buffer with two pointers: front and rear.

struct Queue {
 int arr[100];
 int front = 0, rear = 0, size = 0;

 void enqueue(int x) {
 if (size == 100) {
 cout << "Queue overflow!" << endl;
 return;
 }
 arr[rear] = x;
 rear = (rear + 1) % 100;
 size++;
 }

 void dequeue() {
 if (size == 0) {
 cout << "Queue is empty!" << endl;
 return;
 }
 front = (front + 1) % 100;
 size--;
 }

 int peek() {
 if (size == 0) return -1;
 return arr[front];
 }

 bool empty() {
 return size == 0;
 }
};

Important! Using the modulo (%) operation allows creating a circular buffer, efficiently utilizing the entire array without shifting elements.

Conclusion and Practical
Questions

O(1)
Time Complexity

All main stack and queue
operations are performed

in constant time

2
Implementation

Methods

Array (static) and linked list
(dynamic)

100%
Practical Importance

Used in all modern
programming languages

Self-Assessment Questions:

01

Principles of Operation

What is the fundamental difference between LIFO and FIFO? Give real-life examples.

02

Choice of Implementation

When to prefer an array, and when a linked list? What factors influence the choice?

03

Circular Buffer

Why is a queue more efficient to implement as a circular buffer rather than a regular
array?

04

Practical Application

Name algorithms that use stacks and queues. Explain their role in each case.

Next step: Practical exercises in the seminar 4 implementing a stack for bracket
checking and a queue for supermarket checkout modeling!

